Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nat Commun ; 15(1): 493, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216554

RESUMEN

Measles virus (MV) vaccine strains have shown significant preclinical antitumor activity against glioblastoma (GBM), the most lethal glioma histology. In this first in human trial (NCT00390299), a carcinoembryonic antigen-expressing oncolytic measles virus derivative (MV-CEA), was administered in recurrent GBM patients either at the resection cavity (Group A), or, intratumorally on day 1, followed by a second dose administered in the resection cavity after tumor resection on day 5 (Group B). A total of 22 patients received study treatment, 9 in Group A and 13 in Group B. Primary endpoint was safety and toxicity: treatment was well tolerated with no dose-limiting toxicity being observed up to the maximum feasible dose (2×107 TCID50). Median OS, a secondary endpoint, was 11.6 mo and one year survival was 45.5% comparing favorably with contemporary controls. Other secondary endpoints included assessment of viremia, MV replication and shedding, humoral and cellular immune response to the injected virus. A 22 interferon stimulated gene (ISG) diagonal linear discriminate analysis (DLDA) classification algorithm in a post-hoc analysis was found to be inversely (R = -0.6, p = 0.04) correlated with viral replication and tumor microenvironment remodeling including proinflammatory changes and CD8 + T cell infiltration in post treatment samples. This data supports that oncolytic MV derivatives warrant further clinical investigation and that an ISG-based DLDA algorithm can provide the basis for treatment personalization.


Asunto(s)
Glioblastoma , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Virus del Sarampión/genética , Antígeno Carcinoembrionario/genética , Recurrencia Local de Neoplasia/terapia , Vacuna Antisarampión , Microambiente Tumoral
2.
Front Immunol ; 14: 1279387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022659

RESUMEN

Introduction: Metastatic uveal melanoma (MUM) has a poor prognosis and treatment options are limited. These patients do not typically experience durable responses to immune checkpoint inhibitors (ICIs). Oncolytic viruses (OV) represent a novel approach to immunotherapy for patients with MUM. Methods: We developed an OV with a Vesicular Stomatitis Virus (VSV) vector modified to express interferon-beta (IFN-ß) and Tyrosinase Related Protein 1 (TYRP1) (VSV-IFNß-TYRP1), and conducted a Phase 1 clinical trial with a 3 + 3 design in patients with MUM. VSV-IFNß-TYRP1 was injected into a liver metastasis, then administered on the same day as a single intravenous (IV) infusion. The primary objective was safety. Efficacy was a secondary objective. Results: 12 patients with previously treated MUM were enrolled. Median follow up was 19.1 months. 4 dose levels (DLs) were evaluated. One patient at DL4 experienced dose limiting toxicities (DLTs), including decreased platelet count (grade 3), increased aspartate aminotransferase (AST), and cytokine release syndrome (CRS). 4 patients had stable disease (SD) and 8 patients had progressive disease (PD). Interferon gamma (IFNγ) ELIspot data showed that more patients developed a T cell response to virus encoded TYRP1 at higher DLs, and a subset of patients also had a response to other melanoma antigens, including gp100, suggesting epitope spreading. 3 of the patients who responded to additional melanoma antigens were next treated with ICIs, and 2 of these patients experienced durable responses. Discussion: Our study found that VSV-IFNß -TYRP1 can be safely administered via intratumoral (IT) and IV routes in a previously treated population of patients with MUM. Although there were no clear objective radiographic responses to VSV-IFNß-TYRP1, dose-dependent immunogenicity to TYRP1 and other melanoma antigens was seen.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Estomatitis Vesicular , Animales , Humanos , Interferón beta/metabolismo , Antígenos Específicos del Melanoma , Monofenol Monooxigenasa/metabolismo , Viroterapia Oncolítica/efectos adversos , Virus Oncolíticos/genética , Linfocitos T/metabolismo , Virus de la Estomatitis Vesicular Indiana
3.
Mol Ther Oncolytics ; 27: 239-255, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36458203

RESUMEN

Historically, the clinical utility of oncolytic virotherapy as a treatment for a wide range of cancer types was first demonstrated by three pilot human clinical trials conducted in Japan in the 1970s and 1980s using a wild-type Urabe mumps virus (MuV) clinical isolate. Using a sample of the actual original oncolytic Urabe MuV clinical trial virus stock (MuV-U-Japan) used in these Japanese clinical trials, we found that MuV-U-Japan consisted of a wide variety of very closely related Urabe MuVs that differed by an average of only three amino acids. Two MuV-U-Japan isolates, MuV-UA and MuV-UC, potently killed a panel of established human breast cancer cell lines in vitro, significantly extended survival of nude mice with human triple-negative breast cancer (TNBC) MDA-MB-231 tumor xenografts in vivo, and demonstrated significant killing activity against breast cancer patient-derived xenograft (PDX) cell lines grown as 3D organoids, including PDXs from patients resistant to anthracycline- and taxane-based chemotherapy. We also report success in developing a large-scale MuV-U production and purification process suitable for supporting Investigational New Drug applications for clinical trials. This study demonstrates the suitability of the MuV-UC virus for translation to modern clinical trials for treating patients with TNBC.

4.
Mol Ther Methods Clin Dev ; 26: 532-546, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36092362

RESUMEN

Despite recent therapeutic advances, metastatic breast cancer (MBC) remains incurable. Engineered measles virus (MV) constructs based on the attenuated MV Edmonston vaccine platform have demonstrated significant oncolytic activity against solid tumors. The Helicobacter pylori neutrophil-activating protein (NAP) is responsible for the robust inflammatory reaction in gastroduodenal mucosa during bacterial infection. NAP attracts and activates immune cells at the site of infection, inducing expression of pro-inflammatory mediators. We engineered an MV strain to express the secretory form of NAP (MV-s-NAP) and showed that it exhibits anti-tumor and immunostimulatory activity in human breast cancer xenograft models. In this study, we utilized a measles-infection-permissive mouse model (transgenic IFNAR KO-CD46Ge) to evaluate the biodistribution and safety of MV-s-NAP. The primary objective was to identify potential toxic side effects and confirm the safety of the proposed clinical doses of MV-s-NAP prior to a phase I clinical trial of intratumoral administration of MV-s-NAP in patients with MBC. Both subcutaneous delivery (corresponding to the clinical trial intratumoral administration route) and intravenous (worst case scenario) delivery of MV-s-NAP were well tolerated: no significant clinical, laboratory or histologic toxicity was observed. This outcome supports the safety of MV-s-NAP for oncolytic virotherapy of MBC. The first-in-human clinical trial of MV-s-NAP in patients with MBC (ClinicalTrials.gov: NCT04521764) was subsequently activated.

5.
Mol Ther Oncolytics ; 19: 136-148, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33145397

RESUMEN

Measles virus (MV) Edmonston derivative strains are attractive vector platforms in vaccine development and oncolytic virotherapy. Helicobacter pylori heat shock protein A (HspA) is a bacterial heat shock chaperone with essential function as a Ni-ion scavenging protein. We generated and characterized the immunogenicity of an attenuated MV strain encoding the HspA transgene (MV-HspA). MV-HspA showed faster replication within 48 h of infection with >10-fold higher titers and faster accumulation of the MV proteins. It also demonstrated a superior tumor-killing effect in vitro against a variety of human solid tumor cell lines, including sarcoma, ovarian and breast cancer. Two intraperitoneal (i.p.) doses of 106 50% tissue culture infectious dose (TCID50) MV-HspA significantly improved survival in an ovarian cancer xenograft model: 63.5 days versus 27 days for the control group. The HspA transgene induced a humoral immune response in measles-permissive Ifnarko-CD46Ge transgenic mice. Eight of nine animals developed a long-term anti-HspA antibody response with titers of 1:400 to 1:12,800 without any negative impact on development of protective anti-MV immune memory. MV-HspA triggered an immunogenic cytopathic effect as measured by an HMGB1 assay. The absence of significant elevation of PD-L1 expression indicated that vector-encoded HspA could act as an immunomodulator on the immune check point axis. These data demonstrate that MV-HspA is a potent oncolytic agent and vaccine candidate for clinical translation in cancer treatment and immunoprophylaxis against H. pylori.

6.
Mayo Clin Proc ; 94(9): 1834-1839, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235278

RESUMEN

Recent measles epidemics in US and European cities where vaccination coverage has declined are providing a harsh reminder for the need to maintain protective levels of immunity across the entire population. Vaccine uptake rates have been declining in large part because of public misinformation regarding a possible association between measles vaccination and autism for which there is no scientific basis. The purpose of this article is to address a new misinformed antivaccination argument-that measles immunity is undesirable because measles virus is protective against cancer. Having worked for many years to develop engineered measles viruses as anticancer therapies, we have concluded (1) that measles is not protective against cancer and (2) that its potential utility as a cancer therapy will be enhanced, not diminished, by prior vaccination.


Asunto(s)
Comunicación , Virus del Sarampión/inmunología , Sarampión/epidemiología , Sarampión/prevención & control , Viroterapia Oncolítica/métodos , Vacunación/efectos adversos , Niño , Preescolar , Control de Enfermedades Transmisibles/organización & administración , Europa (Continente) , Femenino , Humanos , Masculino , Prevalencia , Medición de Riesgo , Estados Unidos , Vacunación/métodos
7.
Viruses ; 11(6)2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31195660

RESUMEN

The subgroup A through E avian sarcoma and leukosis viruses (ASLV(A) through ASLV(E)) are a group of highly related alpharetroviruses that have evolved their envelope glycoproteins to use different receptors to enable efficient virus entry due to host resistance and/or to expand host range. Previously, we demonstrated that ASLV(A) in the presence of a competitor to the subgroup A Tva receptor, SUA-rIgG immunoadhesin, evolved to use other receptor options. The selected mutant virus, RCASBP(A)Δ155-160, modestly expanded its use of the Tvb and Tvc receptors and possibly other cell surface proteins while maintaining the binding affinity to Tva. In this study, we further evolved the Δ155-160 virus with the genetic selection pressure of a soluble form of the Tva receptor that should force the loss of Tva binding affinity in the presence of the Δ155-160 mutation. Viable ASLVs were selected that acquired additional mutations in the Δ155-160 Env hypervariable regions that significantly broadened receptor usage to include Tvb and Tvc as well as retaining the use of Tva as a receptor determined by receptor interference assays. A similar deletion in the hr1 hypervariable region of the subgroup C ASLV glycoproteins evolved to broaden receptor usage when selected on Tvc-negative cells.


Asunto(s)
Virus del Sarcoma Aviar/genética , Receptores Virales/fisiología , Proteínas del Envoltorio Viral/genética , Animales , Proteínas Aviares/fisiología , Sitios de Unión/fisiología , Evolución Biológica , Línea Celular , Pollos/virología , Glicoproteínas/genética , Mutación , Sarcoma Aviar/virología , Internalización del Virus
8.
Viruses ; 11(6)2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31151254

RESUMEN

The initial step of retrovirus entry-the interaction between the virus envelope glycoprotein trimer and a cellular receptor-is complex, involving multiple, noncontiguous determinants in both proteins that specify receptor choice, binding affinity and the ability to trigger conformational changes in the viral glycoproteins. Despite the complexity of this interaction, retroviruses have the ability to evolve the structure of their envelope glycoproteins to use a different cellular protein as receptors. The highly homologous subgroup A to E Avian Sarcoma and Leukosis Virus (ASLV) glycoproteins belong to the group of class 1 viral fusion proteins with a two-step triggering mechanism that allows experimental access to intermediate structures during the fusion process. We and others have taken advantage of replication-competent ASLVs and exploited genetic selection strategies to force the ASLVs to naturally evolve and acquire envelope glycoprotein mutations to escape the pressure on virus entry and still yield a functional replicating virus. This approach allows for the simultaneous selection of multiple mutations in multiple functional domains of the envelope glycoprotein that may be required to yield a functional virus. Here, we review the ASLV family and experimental system and the reverse engineering approaches used to understand the evolution of ASLV receptor usage.


Asunto(s)
Virus de la Leucosis Aviar/genética , Virus del Sarcoma Aviar/genética , Evolución Molecular , Receptores Virales/genética , Genética Inversa , Animales , Virus del Sarcoma Aviar/clasificación , Pollos/virología , Mutación , Sarcoma Aviar , Proteínas del Envoltorio Viral/genética , Internalización del Virus , Replicación Viral
9.
Viruses ; 11(6)2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31159208

RESUMEN

The subgroup A through E avian sarcoma and leukosis viruses ASLV(A) through ASLV(E) are a group of highly related alpharetroviruses that have evolved to use very different host protein families as receptors. We have exploited genetic selection strategies to force the replication-competent ASLVs to naturally evolve and acquire mutations to escape the pressure on virus entry and yield a functional replicating virus. In this study, evolutionary pressure was exerted on ASLV(B) virus entry and replication using a secreted for of its Tvb receptor. As expected, mutations in the ASLV(B) surface glycoprotein hypervariable regions were selected that knocked out the ability for the mutant glycoprotein to bind the sTvbS3-IgG inhibitor. However, the subgroup B Rous associated virus 2 (RAV-2) also required additional mutations in the C-terminal end of the SU glycoprotein and multiple regions of TM highlighting the importance of the entire viral envelope glycoprotein trimer structure to mediate the entry process efficiently. These mutations altered the normal two-step ASLV membrane fusion process to enable infection.


Asunto(s)
Virus de la Leucosis Aviar/genética , Virus del Sarcoma Aviar/genética , Mutación , Receptores Virales/genética , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral , Animales , Virus de la Leucosis Aviar/fisiología , Virus del Sarcoma Aviar/fisiología , Línea Celular , Embrión de Pollo , Pollos/virología , Proteínas del Envoltorio Viral/genética , Replicación Viral
10.
Curr Cancer Drug Targets ; 18(2): 177-187, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28228086

RESUMEN

Attenuated Edmonston lineage measles virus (MV-Edm) vaccine strains can preferentially infect and lyse a wide variety of cancer cells. Oncolytic MV-Edm derivatives are genetically engineered to express the human carcinoembryonic antigen (MV-CEA virus) or the human sodium iodide symporter (MV-NIS virus) and are currently being tested in clinical trials against ovarian cancer, glioblastoma multiforme, multiple myeloma, mesothelioma, head and neck cancer, breast cancer and malignant peripheral nerve sheath tumors. This review describes the basic and preclinical data that facilitated the clinical translation of MV-Edm strains, and summarizes the clinical results of this oncolytic platform to date. Furthermore, we discuss the latest clinically relevant MV-Edm vector developments and creative strategies for future translational steps.


Asunto(s)
Ensayos Clínicos como Asunto , Virus del Sarampión/genética , Neoplasias/terapia , Viroterapia Oncolítica , Humanos , Neoplasias/genética , Resultado del Tratamiento
11.
Mol Cancer Ther ; 17(1): 316-326, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29158470

RESUMEN

Clinical translation of intravenous therapies to treat disseminated or metastatic cancer is imperative. Comparative oncology, the evaluation of novel cancer therapies in animals with spontaneous cancer, can be utilized to inform and accelerate clinical translation. Preclinical murine studies demonstrate that single-shot systemic therapy with a vesicular stomatitis virus (VSV)-IFNß-NIS, a novel recombinant oncolytic VSV, can induce curative remission in tumor-bearing mice. Clinical translation of VSV-IFNß-NIS therapy is dependent on comprehensive assessment of clinical toxicities, virus shedding, pharmacokinetics, and efficacy in clinically relevant models. Dogs spontaneously develop cancer with comparable etiology, clinical progression, and response to therapy as human malignancies. A comparative oncology study was carried out to investigate feasibility and tolerability of intravenous oncolytic VSV-IFNß-NIS therapy in pet dogs with spontaneous cancer. Nine dogs with various malignancies were treated with a single intravenous dose of VSV-IFNß-NIS. Two dogs with high-grade peripheral T-cell lymphoma had rapid but transient remission of disseminated disease and transient hepatotoxicity that resolved spontaneously. There was no shedding of infectious virus. Correlative pharmacokinetic studies revealed elevated levels of VSV RNA in blood in dogs with measurable disease remission. This is the first evaluation of intravenous oncolytic virus therapy for spontaneous canine cancer, demonstrating that VSV-IFNß-NIS is well-tolerated and safe in dogs with advanced or metastatic disease. This approach has informed clinical translation, including dose and target indication selection, leading to a clinical investigation of intravenous VSV-IFNß-NIS therapy, and provided preliminary evidence of clinical efficacy and potential biomarkers that correlate with therapeutic response. Mol Cancer Ther; 17(1); 316-26. ©2017 AACR.


Asunto(s)
Enfermedades de los Perros/terapia , Enfermedades de los Perros/virología , Neoplasias/veterinaria , Viroterapia Oncolítica/métodos , Vesiculovirus/fisiología , Administración Intravenosa , Animales , Perros , Femenino , Neoplasias/terapia , Neoplasias/virología , Mascotas
12.
Mol Ther ; 24(12): 2109-2117, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27669655

RESUMEN

Tumor-selective oncolytic vesicular stomatitis viruses (VSVs) are being evaluated in clinical trials. Here, we report that the MPC-11 murine plasmacytoma model is so extraordinarily susceptible to oncolytic VSVs that a low dose of virus leads to extensive intratumoral viral replication, sustained viremia, intravascular coagulation, and a rapidly fatal tumor lysis syndrome (TLS). Rapid softening, shrinkage and hemorrhagic necrosis of flank tumors was noted within 1-2 days after virus administration, leading to hyperkalemia, hyperphosphatemia, hypocalcemia, hyperuricemia, increase in plasma cell free DNA, lymphopenia, consumptive coagulopathy, increase in fibrinogen degradation products, decreased liver function tests, dehydration, weight loss, and euthanasia or death after 5-8 days. Secondary viremia was observed but viral replication in normal host tissues was not detected. Toxicity could be mitigated by using VSVs with slowed replication kinetics, and was less marked in animals with smaller flank tumors. The MPC-11 tumor represents an interesting model to further study the complex interplay of robust intratumoral viral replication, tumor lysis, and associated toxicities in cases where tumors are highly responsive to oncolytic virotherapy.


Asunto(s)
Viroterapia Oncolítica/efectos adversos , Plasmacitoma/terapia , Síndrome de Lisis Tumoral/etiología , Virus de la Estomatitis Vesicular Indiana/genética , Animales , Línea Celular Tumoral , Humanos , Ratones , Trasplante de Neoplasias , Virus Oncolíticos/genética , Resultado del Tratamiento
13.
Mol Ther Oncolytics ; 3: 16019, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27556105

RESUMEN

Mumps virus belongs to the family of Paramyxoviridae and has the potential to be an oncolytic agent. Mumps virus Urabe strain had been tested in the clinical setting as a treatment for human cancer four decades ago in Japan. These clinical studies demonstrated that mumps virus could be a promising cancer therapeutic agent that showed significant antitumor activity against various types of cancers. Since oncolytic virotherapy was not in the limelight until the beginning of the 21(st) century, the interest to pursue mumps virus for cancer treatment slowly faded away. Recent success stories of oncolytic clinical trials prompted us to resurrect the mumps virus and to explore its potential for cancer treatment. We have obtained the Urabe strain of mumps virus from Osaka University, Japan, which was used in the earlier human clinical trials. In this report we describe the development of a reverse genetics system from a major isolate of this Urabe strain mumps virus stock, and the construction and characterization of several recombinant mumps viruses with additional transgenes. We present initial data demonstrating these recombinant mumps viruses have oncolytic activity against tumor cell lines in vitro and some efficacy in preliminary pilot animal tumor models.

14.
Hum Gene Ther Clin Dev ; 27(3): 111-22, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27532609

RESUMEN

Oncolytic VSV-IFNß-NIS is selectively destructive to tumors. Here, we present the IND enabling preclinical rodent studies in support of clinical testing of vesicular stomatitis virus (VSV) as a systemic therapy. Efficacy studies showed dose-dependent tumor regression in C57BL/KaLwRij mice bearing syngeneic 5TGM1 plasmacytomas after systemic VSV administration. In contrast, the virus was effective at all doses tested against human KAS6/1 xenografts in SCID mice. Intravenous administration of VSV-mIFNß-NIS is well tolerated in C57BL/6 mice up to 5 × 10(10) TCID50 (50% tissue culture infective dose)/kg with no neurovirulence, no cytokine storm, and no abnormalities in tissues. Dose-limiting toxicities included elevated transaminases, thrombocytopenia, and lymphopenia. Inactivated viral particles did not cause hepatic toxicity. Intravenously administered VSV was preferentially sequestered by macrophages in the spleen and liver. Quantitative RT-PCR analysis for total viral RNA on days 2, 7, 21, and 58 showed highest VSV RNA in day 2 samples; highest in spleen, liver, lung, lymph node, kidney, gonad, and bone marrow. No infectious virus was recovered from tissues at any time point. The no observable adverse event level and maximum tolerated dose of VSV-mIFNß-NIS in C57BL/6 mice are 10(10) TCID50/kg and 5 × 10(10) TCID50/kg, respectively. Clinical translation of VSV-IFNß-NIS is underway in companion dogs with cancer and in human patients with relapsed hematological malignancies and endometrial cancer.


Asunto(s)
Interferón beta/genética , Mieloma Múltiple/terapia , Viroterapia Oncolítica , Simportadores/genética , Virus de la Estomatitis Vesicular Indiana/genética , Vesiculovirus/genética , Animales , Células Cultivadas , Perros , Femenino , Vectores Genéticos/administración & dosificación , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones SCID , Mieloma Múltiple/genética , Seguridad
15.
Oncotarget ; 6(32): 33165-77, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26431376

RESUMEN

Vesicular stomatitis virus (VSV) is a potent oncolytic virus for many tumors. VSV that produces interferon-ß (VSV-IFNß) is now in early clinical testing for solid tumors. Here, the preclinical activity of VSV and VSV-IFNß against non-small cell lung cancer (NSCLC) is reported. NSCLC cell lines were treated in vitro with VSV expressing green fluorescence protein (VSV-GFP) and VSV-IFNß. VSV-GFP and VSV-IFNß were active against NSCLC cells. JAK/STAT inhibition with ruxolitinib re-sensitized resistant H838 cells to VSV-IFNß mediated oncolysis. Intratumoral injections of VSV-GFP and VSV-IFNß reduced tumor growth and weight in H2009 nude mouse xenografts (p < 0.01). A similar trend was observed in A549 xenografts. Syngeneic LM2 lung tumors grown in flanks of A/J mice were injected with VSV-IFNß intratumorally. Treatment of LM2 tumors with VSV-IFNß resulted in tumor regression, prolonged survival (p < 0.0001), and cure of 30% of mice. Intratumoral injection of VSV-IFNß resulted in decreased tumor-infiltrating regulatory T cells (Treg) and increased CD8+ T cells. Tumor cell expression of PDL-1 was increased after VSV-IFNß treatment. VSV-IFNß has potent antitumor effects and promotes systemic antitumor immunity. These data support further clinical investigation of VSV-IFNß for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Interferón beta/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/inmunología , Virus de la Estomatitis Vesicular Indiana/fisiología , Animales , Carcinoma de Pulmón de Células no Pequeñas/virología , Modelos Animales de Enfermedad , Humanos , Interferón beta/biosíntesis , Interferón beta/genética , Neoplasias Pulmonares/virología , Ratones , Ratones Desnudos , Virus Oncolíticos/genética , Virus Oncolíticos/metabolismo , Virus de la Estomatitis Vesicular Indiana/genética , Virus de la Estomatitis Vesicular Indiana/inmunología
16.
Proc Natl Acad Sci U S A ; 112(32): 9860-5, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26216971

RESUMEN

Antibody-based therapeutics have now had success in the clinic. The affinity and specificity of the antibody for the target ligand determines the specificity of therapeutic delivery and off-target side effects. The discovery and optimization of high-affinity antibodies to important therapeutic targets could be significantly improved by the availability of a robust, eukaryotic display technology comparable to phage display that would overcome the protein translation limitations of microorganisms. The use of eukaryotic cells would improve the diversity of the displayed antibodies that can be screened and optimized as well as more seamlessly transition into a large-scale mammalian expression system for clinical production. In this study, we demonstrate that the replication and polypeptide display characteristics of a eukaryotic retrovirus, avian leukosis virus (ALV), offers a robust, eukaryotic version of bacteriophage display. The binding affinity of a model single-chain Fv antibody was optimized by using ALV display, improving affinity >2,000-fold, from micromolar to picomolar levels. We believe ALV display provides an extension to antibody display on microorganisms and offers virus and cell display platforms in a eukaryotic expression system. ALV display should enable an improvement in the diversity of properly processed and functional antibody variants that can be screened and affinity-optimized to improve promising antibody candidates.


Asunto(s)
Anticuerpos/metabolismo , Virus de la Leucosis Aviar/metabolismo , Técnicas de Visualización de Superficie Celular/métodos , Células Eucariotas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Pollos , Regiones Determinantes de Complementariedad , Glicoproteínas/metabolismo , Humanos , Cinética , Laminina/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Anticuerpos de Cadena Única/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Virión/metabolismo , Replicación Viral
17.
Cancer Res ; 75(1): 22-30, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25398436

RESUMEN

Edmonston vaccine strains of measles virus (MV) have significant antitumor activity in mouse xenograft models of ovarian cancer. MV engineered to express the sodium iodide symporter gene (MV-NIS) facilitates localization of viral gene expression and offers a tool for tumor radiovirotherapy. Here, we report results from a clinical evaluation of MV-NIS in patients with taxol- and platinum-resistant ovarian cancer. MV-NIS was given intraperitoneally every 4 weeks for up to 6 cycles. Treatment was well tolerated and associated with promising median overall survival in these patients with heavily pretreated ovarian cancer; no dose-limiting toxicity was observed in 16 patients treated at high-dose levels (10(8)-10(9) TCID50), and their median overall survival of 26.5 months compared favorably with other contemporary series. MV receptor CD46 and nectin-4 expression was confirmed by immunohistochemistry in patient tumors. Sodium iodide symporter expression in patient tumors after treatment was confirmed in three patients by (123)I uptake on SPECT/CTs and was associated with long progression-free survival. Immune monitoring posttreatment showed an increase in effector T cells recognizing the tumor antigens IGFBP2 and FRα, indicating that MV-NIS treatment triggered cellular immunity against the patients' tumor and suggesting that an immune mechanism mediating the observed antitumor effect. Our findings support further clinical evaluation of MV-NIS as an effective immunovirotherapy.


Asunto(s)
Virus del Sarampión/fisiología , Viroterapia Oncolítica/métodos , Virus Oncolíticos/fisiología , Neoplasias Ováricas/terapia , Simportadores/biosíntesis , Animales , Estudios de Cohortes , Resistencia a Antineoplásicos , Femenino , Humanos , Virus del Sarampión/genética , Virus del Sarampión/metabolismo , Ratones , Persona de Mediana Edad , Virus Oncolíticos/genética , Virus Oncolíticos/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/virología , Simportadores/genética , Transgenes , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Virol ; 89(4): 2136-48, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25473063

RESUMEN

UNLABELLED: The study of the interactions of subgroup A avian sarcoma and leucosis viruses [ASLV(A)] with the TVA receptor required to infect cells offers a powerful experimental model of retroviral entry. Several regions and specific residues in the TVA receptor have previously been identified to be critical determinants of the binding affinity with ASLV(A) envelope glycoproteins and to mediate efficient infection. Two homologs of the TVA receptor have been cloned: the original quail TVA receptor, which has been the basis for most of the initial characterization of the ASLV(A) TVA, and the chicken TVA receptor, which is 65% identical to the quail receptor overall but identical in the region thought to be critical for infection. Our previous work characterized three mutant ASLV(A) isolates that could efficiently bind and infect cells using the chicken TVA receptor homolog but not using the quail TVA receptor homolog, with the infectivity of one mutant virus being >500-fold less with the quail TVA receptor. The mutant viruses contained mutations in the hr1 region of the surface glycoprotein. Using chimeras of the quail and chicken TVA receptors, we have identified new residues of TVA critical for the binding affinity and entry of ASLV(A) using the mutant glycoproteins and viruses to probe the function of those residues. The quail TVA receptor required changes at residues 10, 14, and 31 of the corresponding chicken TVA residues to bind wild-type and mutant ASLV(A) glycoproteins with a high affinity and recover the ability to mediate efficient infection of cells. A model of the TVA determinants critical for interacting with ASLV(A) glycoproteins is proposed. IMPORTANCE: A detailed understanding of how retroviruses enter cells, evolve to use new receptors, and maintain efficient entry is crucial for identifying new targets for combating retrovirus infection and pathogenesis, as well as for developing new approaches for targeted gene delivery. Since all retroviruses share an envelope glycoprotein organization, they likely share a mechanism of receptor triggering to begin the entry process. Multiple, noncontiguous interaction determinants located in the receptor and the surface (SU) glycoprotein hypervariable domains are required for binding affinity and to restrict or broaden receptor usage. In this study, further mechanistic details of the entry process were elucidated by characterizing the ASLV(A) glycoprotein interactions with the TVA receptor required for entry. The ASLV(A) envelope glycoproteins are organized into functional domains that allow changes in receptor choice to occur by mutation and/or recombination while maintaining a critical level of receptor binding affinity and an ability to trigger glycoprotein conformational changes.


Asunto(s)
Virus de la Leucosis Aviar/fisiología , Proteínas Aviares/metabolismo , Virus del Sarcoma Aviar/fisiología , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Acoplamiento Viral , Internalización del Virus , Animales , Proteínas Aviares/genética , Pollos , Clonación Molecular , Modelos Moleculares , Unión Proteica , Conformación Proteica , Codorniz , Receptores Virales/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas del Envoltorio Viral/genética
19.
J Thorac Oncol ; 9(8): 1101-10, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25157763

RESUMEN

INTRODUCTION: Oncolytic virus therapy is a promising therapy for numerous tumor types. Edmonston-strain measles virus (MV) has been tested in clinical trials for ovarian cancer, glioma, and myeloma. Therefore, the antitumor activity of MV against non-small-cell lung cancer (NSCLC) was assessed. METHODS: Human NSCLC cells and immortalized lung epithelial cell lines, Beas2B, were infected with either MV-producing green fluorescent protein or MV-producing carcinoembryonic antigen. Cells were assessed for viability, induction of apoptosis by caspase and poly-ADP ribose polymerase cleavage, and for viral transgene production. The dependency of MV entry on CD46 and nectin-4 were determined using blocking antibodies. The role of host translational activity on viral replication was assessed by overexpression of eIF4E and translation inhibition. Antitumor activity was assessed by measuring treated NSCLC xenografts from flanks of nude mice. RESULTS: MV infection of NSCLC cells results in potent cell killing in most of the cell lines compared with immortalized Beas2B cells and induces apoptosis. MV infection was prevented by blocking of CD46, however independent of nectin-4 blockade. Tumor weights are diminished after intratumoral injections of MV-producing carcinoembryonic antigen in one of two cell lines and result in detectable viral transgene in serum of mice. CONCLUSIONS: These data indicate that MV is oncolytic for human NSCLC and this was independent of nectin-4 expression. Dysregulated protein translational machinery may play a role in determining tumor tropism in NSCLC. MV combined with gemcitabine could be explored further as chemovirotherapy for NSCLC.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/terapia , Virus del Sarampión/fisiología , Viroterapia Oncolítica , Carga Tumoral , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antimetabolitos Antineoplásicos/farmacología , Antígeno Carcinoembrionario/efectos de los fármacos , Antígeno Carcinoembrionario/genética , Antígeno Carcinoembrionario/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Células Epiteliales/virología , Factor 4E Eucariótico de Iniciación/metabolismo , Proteínas Fluorescentes Verdes/genética , Humanos , Hidrazonas/farmacología , Pulmón , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Vacuna Antisarampión , Virus del Sarampión/genética , Proteína Cofactora de Membrana/antagonistas & inhibidores , Proteína Cofactora de Membrana/metabolismo , Ratones , Fosfoproteínas/metabolismo , Sirolimus/farmacología , Tiazoles/farmacología , Replicación Viral , Gemcitabina
20.
Mayo Clin Proc ; 89(7): 926-33, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24835528

RESUMEN

MV-NIS is an engineered measles virus that is selectively destructive to myeloma plasma cells and can be monitored by noninvasive radioiodine imaging of NIS gene expression. Two measles-seronegative patients with relapsing drug-refractory myeloma and multiple glucose-avid plasmacytomas were treated by intravenous infusion of 10(11) TCID50 (50% tissue culture infectious dose) infectious units of MV-NIS. Both patients responded to therapy with M protein reduction and resolution of bone marrow plasmacytosis. Further, one patient experienced durable complete remission at all disease sites. Tumor targeting was clearly documented by NIS-mediated radioiodine uptake in virus-infected plasmacytomas. Toxicities resolved within the first week after therapy. Oncolytic viruses offer a promising new modality for the targeted infection and destruction of disseminated cancer.


Asunto(s)
Virus del Sarampión , Mieloma Múltiple/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos , Anciano , Femenino , Humanos , Infusiones Intravenosas , Persona de Mediana Edad , Mieloma Múltiple/diagnóstico por imagen , Cintigrafía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...